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. Thin-walled pressure

vessel

Why a hotdog always ruptures along
its length...

Georg Fantner



=PFL Thin walled pressure
vessels

leaton]:

4-5kg Butane




=P7L  Aortic Aneurysm

Disease Procedure

Ascending Aortic Aneurysm Aortic Replacement




=PFL  Bacteria as pressure vessels:
The effect of Turgor pressure

a b N PG PG
- G )

dsdids Sikebiabedat

e uter membrane. ~

(186646 PRV PAs RAN

Non-uniform crosslinking Processivity-dependent
straightening

m

[+ High PG density

B smaller T,

|+ Less efficient [+ Multilayered PG
| activation of PBPs | |2 No activation of PBPs
¢ Balanced growth

Cell growth rate = PG synthesis rate

Unbalanced growth Unbalanced growth
Cell growth rate < PG synthesis rate Cell growth rate > PG synthesis rate

larger T,
Stress-dependent synthesis

C \ AR
‘6

Straightening
coefficient, S
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b r 4 “t
+ High PG surface density + Lower PG surface den:
+ Small pores + Larger pores

PG
por
\ [Low efficiency of Lpo-mediated | [ High efficiency of Lpo-mediated | /
activation of PBPs through the PG| | activation of PBPs through the PG
net leads to low PG growth rate net leads to high PG growth rate

v

4 t t 4 A
MreB-dependent synthesis

Nature Reviews | Microbiology
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Thin-walled pressure vessels

= Pressure vessels are generally combinations of spheres, cylinders or
ellipsoids, with the task of containing gasses or liquids under pressure.

= We are interested in the stresses that occur in the walls of the pressure
vessel.

= \WWe call a pressure vessel thin walled if the thickness t<0.1r, inner radius
(examples: boiler, scuba tank, inflated balloon). In this case the wall
acts like a membrane and experiences no bending, no significant
variation in the stress from the inner to the outer surface.

= \WWe call a pressure vessel thick walled if t>0.1r; (examples: gun barrel,
explosion chamber, high pressure hydraulic presses)

(3]

Georg Fantner
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L 6

Thin-walled pressure
vessels

Wall thickness ¢

Free surface: 0,,=0, 7,,=0, 1,4 =0

o, inside body neglected since

it varies from —p to 0 over wall,
which is << 0gg & << O

Zero because of thin

body and t,, =T,

Georg Fantner

O, : axial stress

& / Zero because of
I 4 axisymmetry and
) no torque

Zero o tangential forces
Ogg- hoop (a:k.a. because because 6 =0 & T,=0
circumferential) . _
stress S

Tor=Tro

We recall: pressure exerts a force/unit
area, normal to the area S=para|lel to the

B BE X o 0 O normal vector of the area
Tox Og9 Tor |=| O o9 O This pressure induces a tensile stress in

Ly Tp O O 0 O the thin wall.
The thin wall is in plane stress!

Since the pressure does not apply any
shear |loads, the shear components on all

o099 = Hoop stress sides have to be zero.
In cylindrical coordinates

0., = Axial stress
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Both interior and exterior
vessel radii can be taken
as R, since t << R

Thin walled pressure
vessels

Look at the cross section from the
side:
Projected “inner” area DL
Wall area: 2t L

Georg Fantner =~




=PFL Hoop-stresses

= The tensile stresses around the circumference are called hoop stresses. In
cylindrical coordinates they would be called:

Opg — O ‘— 01
= From the equilibrium of forces in the “out of plane” direction we get:
p-7;-dr = 0p9 - 2t-dx

= Hoop stress:

pD; _bri

0':
DY /




=PFL  Longitudinal stresses |

._>
—>
—>

= Axial or longitudinal stresses 0,: stresses p —» 02
acting along the axis of the pressure —>
vessel. >

= The projected cross-section of the end caps
is a circle with area:

A = 7r?

= The force in the longitudinal direction is
therefore:

= F, is balanced by the longitudinal stress Fb=p-A=p-nrf
O04x=0x=0> on the area of the cross-section F, =0y - (1% —17)
o (2nR 1)

= From force equilibrium:

_pr

927 9

= For a thin walled spherical pressure vessel: p (R?)

pr
0'120'2:2—t




=PrL

Kidneys

Iliac
arteries

=

Example: arterial
aneurism

Aneurism is a condition where there is ballooning or dilation
in a blood vessel.

Calculate the hoop stress in a healthy artery modeled as
a cylinder (r=1cm

Calculate the hoop stress in a dilated artery modeled as
a cylinder (r=2.5cm).

Calculate the hoop stress in a ballooning artery with
d=5cm

Assume: thin-walled ﬁressure vessel, blood pressure varies
from Iow([dlabollo) to high (systollc) pressure durln? one
h??rtbea * Psystolic=1.6 N/cm?. The artery has a wall thickness
of 1mm.
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Transformation of
stresses and strains

Transformation of plane stress

Georg Fantner



=PrL  Stress in axially loaded bars

What happens inside the bar when it is stretched?

(@) E L_’ P

» Axially loaded bar fixed at x=0 and loaded A > B

by force P at x=L (figure a) %=0 x=L
= Apply method of section normal to bar axis s |

(figure b) p ®) H > P

o= — i
A

= Apply method of section angled to bar axis g

(figure c) © . AN e

Angular dependence of stress

_ force  Pcosf P

2
= — = — 0
o0 area A/cosf A cos
__Psmb P hoso
0= A/cos A




=PrL  Stress in axially loaded bars

Directions of maximum stress

= Maximum normal stress:

5 P

=0
1 @g

= Maximum shear stress:

P
iTg d (——Sinﬁcosﬁ) =0 — 0 =45°

a0’ dap\ A
P
| Trmaz| = 1 sin(m/4) cos(m/4)

|7_ | _ P _ Omax
max 24 9




=PrL

B ME-231B / STRUCTURAL MECHANICS FOR SV

Transformation of
stress and strain

» So far, we've looked at isolated effects of normal and shear stress due
to loading by axial forces and shear forces

= \We've always looked at what the effects of stresses are along the

direction that they are acting on (or in the direction 90degr. from that) to
see if we are within the safe stress limits of the material

= However, a combination of normal stress and shear stress can result in
much larger normal stresses in a different direction.

= To calculate these maximum stress values and the angles in which they

occur, we need to find a way to calculate the stress in any direction that
is oriented at an arbitrary angle to our reference axes

Georg Fantner
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Why do we care about
stress transformations?

Many materials are not uniformly
strong in all directions!

Fantner et al. Bone 2004

Bone consists of mineralized collagen fibrils.

Bone fracture occurs by delamination along
the fibrils




Very important for
composite materials

Carbon composite is very strong in
some direction, much weaker in
other directions.

16
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[y
~

Georg Fantner

¢ Transformation of stress
. and strain

Xy

A What if we have multiple loads acting

O,, >0, at the same time?

A square sheet of material is loaded in the X and Y direction
Let us assume:
Oy IS 75% Of Oppax
V Oyy iS 75% Of Oy

Yy Ty IS 75% Of Trax

Each of the loads individually do not exceed the fracture limit

But will the plate withstand the combination?

B ME-231B / STRUCTURAL MECHANICS FOR SV
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L

Transformation of stress
and strain

We need to find a way to evaluate the
stresses and strains in any arbitrary
direction.

We already know that we can represent
stresses and strains as tensors.

Strictly speaking what we will do is perform a
coordinate transform of the tensor to a new
coordinate system with the unit vectors in
the directions that we are interested in.

[y
-]

Georg Fantner




=PFL  We will do matrix coordinate
transforms instead

= We can rotate the coordinate system of a vector (x,y) by an angle 8 by
multiplying with the transformation matrix Q:

T'=Q v

'\ [ cosf sinf x
y') — \—sin® cosf) \y
= \We can rotate the coordinate system of a tensor by an angle 6 by multiplying

with the transformation matrix Q:

AW e
t/:Q'tQT

T3y Tp\ _ [ cos® sin@\ (w11 w12 (cosf —sinf
xhy  xh —sinf  cos6 To1 Too sinf  cosf

19
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=PFL  Transformation of plane stress

= The result of all this are the formulas to transform the normal stress and shear
stress from the coordinates x,y to X’ and y’

_O,t0, 0,—0

o, = + *c0s20+7,, sin 20
2 2
o,+‘to, 0,—0O
0,=———"———"—7c0s20—T,, sin20
2 2 Y
o,—0
Tyy=——" 5 *sin26+ 7, cos20

= \We can also show from these formulas that
Oy + Oy = Oy + Oy




Maximum and Minimum Skress

Transformation of
stresses and strains

Maximal stresses and principle
angles

21
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=PFL  Transformation of stress and strain

Principal and maximum stresses

= From the equations for normal and shear stress under an arbitrary angle, we
can see that there are angles of maximum and minimum shear and normal
stresses

= We can calculate these angles by setting the respective derivatives to zero
= For the maximum/minimum of the normal stresses we get:

2

= This is the principal stress and the angle under which it is is the principal axis



EPFL Transformation to

! "\ ' principal stresses
0_\.-1 ol 0, i
L — \(/ il Assume an element is under a
o, LY x /6,, combination of normal and shear
"—l | X stresses when looked at in a specific
W — L \ coordinate system.
' lc_ o There exists a

in which the description of the

Stresses in given

coordinate system Principal stresses same stress eleme_nt will
_ , with the shear
stresses being zero.

The normal stresses expressed in this

rotated coordinate system are the

. One normal stress is
the maximum normal stress. The other
normal stress is the minimal stress

The axes of this rotated coordinate
system are the :




=P7L  Principal and maximum shear stresses

2

+ 72

xy

= For the plane where the shear stress is maximum we get:
o,—0

T =
min 2

= The absolute value of the maximum shear stress is the same for the
axis of maximum and the axis of minimum shear stress. This is
understandable, since the material doesn’t care if it is “sheared left or
right”

= |n the principal axis, there is nor shear stress

Y

» In the axis of maximum shear stress, there is also a normal stress
(average normal stress)
_0x10,

098_ 5

24
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Normal Stress

Shear stress

'I?/Igg)g(li;um On = 5 tan l—— 0s = = tan~! [ — 2= vy
+ > o o 2
g a. ag. — —
Max/Min Olp= 5k \/(”2“’> +72, Tmaz,min = T <u> +72,
Value 2

“Other” stress
at that angle

Oz + Oyy

Oxy’ — Oquv —




